Copied to
clipboard

G = C30.4C42order 480 = 25·3·5

4th non-split extension by C30 of C42 acting via C42/C2=C2×C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C30.4C42, C3⋊C84F5, C5⋊C81Dic3, C153C86C4, C6.9(C4×F5), D5⋊C8.2S3, C32(C8⋊F5), C51(C24⋊C4), C152(C8⋊C4), C4.25(S3×F5), C20.25(C4×S3), C60.25(C2×C4), (C4×D5).71D6, D10.8(C4×S3), C12.32(C2×F5), C2.5(Dic3×F5), C10.4(C4×Dic3), D5.1(C8⋊S3), (C3×D5).2M4(2), Dic5.8(C2×Dic3), (D5×C12).63C22, (C5×C3⋊C8)⋊6C4, (C3×C5⋊C8)⋊2C4, (D5×C3⋊C8).9C2, (C4×C3⋊F5).3C2, (C2×C3⋊F5).2C4, (C3×D5⋊C8).3C2, (C6×D5).12(C2×C4), (C3×Dic5).16(C2×C4), SmallGroup(480,226)

Series: Derived Chief Lower central Upper central

C1C30 — C30.4C42
C1C5C15C30C3×Dic5D5×C12C3×D5⋊C8 — C30.4C42
C15C30 — C30.4C42
C1C4

Generators and relations for C30.4C42
 G = < a,b,c | a30=1, b4=c4=a15, bab-1=a13, cac-1=a11, cbc-1=a15b >

Subgroups: 356 in 80 conjugacy classes, 36 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2×C4, D5, C10, Dic3, C12, C12, C2×C6, C15, C42, C2×C8, Dic5, C20, F5, D10, C3⋊C8, C3⋊C8, C24, C2×Dic3, C2×C12, C3×D5, C30, C8⋊C4, C52C8, C40, C5⋊C8, C4×D5, C2×F5, C2×C3⋊C8, C4×Dic3, C2×C24, C3×Dic5, C60, C3⋊F5, C6×D5, C8×D5, D5⋊C8, C4×F5, C24⋊C4, C5×C3⋊C8, C153C8, C3×C5⋊C8, D5×C12, C2×C3⋊F5, C8⋊F5, D5×C3⋊C8, C3×D5⋊C8, C4×C3⋊F5, C30.4C42
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C42, M4(2), F5, C4×S3, C2×Dic3, C8⋊C4, C2×F5, C8⋊S3, C4×Dic3, C4×F5, C24⋊C4, S3×F5, C8⋊F5, Dic3×F5, C30.4C42

Smallest permutation representation of C30.4C42
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 68 36 106 16 83 51 91)(2 75 55 119 17 90 40 104)(3 82 44 102 18 67 59 117)(4 89 33 115 19 74 48 100)(5 66 52 98 20 81 37 113)(6 73 41 111 21 88 56 96)(7 80 60 94 22 65 45 109)(8 87 49 107 23 72 34 92)(9 64 38 120 24 79 53 105)(10 71 57 103 25 86 42 118)(11 78 46 116 26 63 31 101)(12 85 35 99 27 70 50 114)(13 62 54 112 28 77 39 97)(14 69 43 95 29 84 58 110)(15 76 32 108 30 61 47 93)
(1 106 36 83 16 91 51 68)(2 117 37 64 17 102 52 79)(3 98 38 75 18 113 53 90)(4 109 39 86 19 94 54 71)(5 120 40 67 20 105 55 82)(6 101 41 78 21 116 56 63)(7 112 42 89 22 97 57 74)(8 93 43 70 23 108 58 85)(9 104 44 81 24 119 59 66)(10 115 45 62 25 100 60 77)(11 96 46 73 26 111 31 88)(12 107 47 84 27 92 32 69)(13 118 48 65 28 103 33 80)(14 99 49 76 29 114 34 61)(15 110 50 87 30 95 35 72)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,68,36,106,16,83,51,91)(2,75,55,119,17,90,40,104)(3,82,44,102,18,67,59,117)(4,89,33,115,19,74,48,100)(5,66,52,98,20,81,37,113)(6,73,41,111,21,88,56,96)(7,80,60,94,22,65,45,109)(8,87,49,107,23,72,34,92)(9,64,38,120,24,79,53,105)(10,71,57,103,25,86,42,118)(11,78,46,116,26,63,31,101)(12,85,35,99,27,70,50,114)(13,62,54,112,28,77,39,97)(14,69,43,95,29,84,58,110)(15,76,32,108,30,61,47,93), (1,106,36,83,16,91,51,68)(2,117,37,64,17,102,52,79)(3,98,38,75,18,113,53,90)(4,109,39,86,19,94,54,71)(5,120,40,67,20,105,55,82)(6,101,41,78,21,116,56,63)(7,112,42,89,22,97,57,74)(8,93,43,70,23,108,58,85)(9,104,44,81,24,119,59,66)(10,115,45,62,25,100,60,77)(11,96,46,73,26,111,31,88)(12,107,47,84,27,92,32,69)(13,118,48,65,28,103,33,80)(14,99,49,76,29,114,34,61)(15,110,50,87,30,95,35,72)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,68,36,106,16,83,51,91)(2,75,55,119,17,90,40,104)(3,82,44,102,18,67,59,117)(4,89,33,115,19,74,48,100)(5,66,52,98,20,81,37,113)(6,73,41,111,21,88,56,96)(7,80,60,94,22,65,45,109)(8,87,49,107,23,72,34,92)(9,64,38,120,24,79,53,105)(10,71,57,103,25,86,42,118)(11,78,46,116,26,63,31,101)(12,85,35,99,27,70,50,114)(13,62,54,112,28,77,39,97)(14,69,43,95,29,84,58,110)(15,76,32,108,30,61,47,93), (1,106,36,83,16,91,51,68)(2,117,37,64,17,102,52,79)(3,98,38,75,18,113,53,90)(4,109,39,86,19,94,54,71)(5,120,40,67,20,105,55,82)(6,101,41,78,21,116,56,63)(7,112,42,89,22,97,57,74)(8,93,43,70,23,108,58,85)(9,104,44,81,24,119,59,66)(10,115,45,62,25,100,60,77)(11,96,46,73,26,111,31,88)(12,107,47,84,27,92,32,69)(13,118,48,65,28,103,33,80)(14,99,49,76,29,114,34,61)(15,110,50,87,30,95,35,72) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,68,36,106,16,83,51,91),(2,75,55,119,17,90,40,104),(3,82,44,102,18,67,59,117),(4,89,33,115,19,74,48,100),(5,66,52,98,20,81,37,113),(6,73,41,111,21,88,56,96),(7,80,60,94,22,65,45,109),(8,87,49,107,23,72,34,92),(9,64,38,120,24,79,53,105),(10,71,57,103,25,86,42,118),(11,78,46,116,26,63,31,101),(12,85,35,99,27,70,50,114),(13,62,54,112,28,77,39,97),(14,69,43,95,29,84,58,110),(15,76,32,108,30,61,47,93)], [(1,106,36,83,16,91,51,68),(2,117,37,64,17,102,52,79),(3,98,38,75,18,113,53,90),(4,109,39,86,19,94,54,71),(5,120,40,67,20,105,55,82),(6,101,41,78,21,116,56,63),(7,112,42,89,22,97,57,74),(8,93,43,70,23,108,58,85),(9,104,44,81,24,119,59,66),(10,115,45,62,25,100,60,77),(11,96,46,73,26,111,31,88),(12,107,47,84,27,92,32,69),(13,118,48,65,28,103,33,80),(14,99,49,76,29,114,34,61),(15,110,50,87,30,95,35,72)]])

48 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H 5 6A6B6C8A8B8C8D8E8F8G8H 10 12A12B12C12D 15 20A20B24A···24H 30 40A40B40C40D60A60B
order1222344444444566688888888101212121215202024···2430404040406060
size1155211553030303042101066101010103030422101084410···1081212121288

48 irreducible representations

dim1111111122222224444888
type+++++-++++-
imageC1C2C2C2C4C4C4C4S3Dic3D6M4(2)C4×S3C4×S3C8⋊S3F5C2×F5C4×F5C8⋊F5S3×F5Dic3×F5C30.4C42
kernelC30.4C42D5×C3⋊C8C3×D5⋊C8C4×C3⋊F5C5×C3⋊C8C153C8C3×C5⋊C8C2×C3⋊F5D5⋊C8C5⋊C8C4×D5C3×D5C20D10D5C3⋊C8C12C6C3C4C2C1
# reps1111224412142281124112

Matrix representation of C30.4C42 in GL6(𝔽241)

2402400000
100000
00024000
00002400
00000240
001111
,
100000
010000
002130185185
001851850213
005628560
002821321328
,
6400000
1771770000
0013603131
002101052100
000210105210
0031310136

G:=sub<GL(6,GF(241))| [240,1,0,0,0,0,240,0,0,0,0,0,0,0,0,0,0,1,0,0,240,0,0,1,0,0,0,240,0,1,0,0,0,0,240,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,213,185,56,28,0,0,0,185,28,213,0,0,185,0,56,213,0,0,185,213,0,28],[64,177,0,0,0,0,0,177,0,0,0,0,0,0,136,210,0,31,0,0,0,105,210,31,0,0,31,210,105,0,0,0,31,0,210,136] >;

C30.4C42 in GAP, Magma, Sage, TeX

C_{30}._4C_4^2
% in TeX

G:=Group("C30.4C4^2");
// GroupNames label

G:=SmallGroup(480,226);
// by ID

G=gap.SmallGroup(480,226);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,253,64,100,80,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c|a^30=1,b^4=c^4=a^15,b*a*b^-1=a^13,c*a*c^-1=a^11,c*b*c^-1=a^15*b>;
// generators/relations

׿
×
𝔽